Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(3)2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35163451

RESUMEN

Higher concentration of protons in the mitochondrial intermembrane space compared to the matrix results in an electrochemical potential causing the back flux of protons to the matrix. This proton transport can take place through ATP synthase complex (leading to formation of ATP) or can occur via proton transporters of the mitochondrial carrier superfamily and/or membrane lipids. Some mitochondrial proton transporters, such as uncoupling proteins (UCPs), transport protons as their general regulating function; while others are symporters or antiporters, which use the proton gradient as a driving force to co-transport other substrates across the mitochondrial inner membrane (such as phosphate carrier, a symporter; or aspartate/glutamate transporter, an antiporter). Passage (or leakage) of protons across the inner membrane to matrix from any route other than ATP synthase negatively impacts ATP synthesis. The focus of this review is on regulated proton transport by UCPs. Recent findings on the structure and function of UCPs, and the related research methodologies, are also critically reviewed. Due to structural similarity of members of the mitochondrial carrier superfamily, several of the known structural features are potentially expandable to all members. Overall, this report provides a brief, yet comprehensive, overview of the current knowledge in the field.


Asunto(s)
Mitocondrias/metabolismo , Proteínas Desacopladoras Mitocondriales/química , Proteínas Desacopladoras Mitocondriales/metabolismo , Animales , Regulación de la Expresión Génica , Humanos , Transporte Iónico , Potencial de la Membrana Mitocondrial , Modelos Moleculares , Conformación Proteica
2.
FEBS J ; 288(9): 3024-3033, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33202085

RESUMEN

Uncoupling protein 1 (UCP1) is found in the inner mitochondrial membrane of brown adipocytes. In the presence of long-chain fatty acids (LCFAs), UCP1 increases the proton conductance, which, in turn, increases fatty acid oxidation and energy release as heat. Atomic models of UCP1 and UCP2 have been generated based on the NMR backbone structure of UCP2 in dodecylphosphocholine (DPC), a detergent known to inactivate UCP1. Based on NMR titration experiments on UCP1 with LCFA, it has been proposed that K56 and K269 are crucial for LCFA binding and UCP1 activation. Given the numerous controversies on the use of DPC for structure-function analyses of membrane proteins, we revisited those UCP1 mutants in a more physiological context by expressing them in the mitochondria of Saccharomyces cerevisiae. Mitochondrial respiration, assayed on permeabilized spheroplasts, enables the determination of UCP1 activation and inhibition. The K56S, K269S, and K56S/K269S mutants did not display any default in activation, which shows that the NMR titration experiments in DPC detergent are not relevant to UCP1 function.


Asunto(s)
Adipocitos Marrones/ultraestructura , Proteínas Desacopladoras Mitocondriales/ultraestructura , Conformación Proteica , Proteína Desacopladora 1/ultraestructura , Adipocitos Marrones/metabolismo , Animales , Ácidos Grasos/genética , Ácidos Grasos/metabolismo , Humanos , Canales Iónicos/genética , Membranas Mitocondriales/metabolismo , Membranas Mitocondriales/ultraestructura , Proteínas Desacopladoras Mitocondriales/química , Modelos Estructurales , Consumo de Oxígeno/genética , Fosforilcolina/análogos & derivados , Fosforilcolina/química , Protones , Ratas , Saccharomyces cerevisiae , Relación Estructura-Actividad , Proteína Desacopladora 1/química , Proteína Desacopladora 1/genética
3.
Mitochondrion ; 53: 109-120, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32439620

RESUMEN

The biological function of plant mitochondrial uncoupling proteins (pUCPs) has been a matter of considerable controversy. For example, the pUCP capacity to uncouple respiration from ATP synthesis in vivo has never been fully acknowledged, in contrast to the mammalian UCP1 (mUCP1) role in uncoupling respiration-mediated thermogenesis. Interestingly, both pUCPs and mUCPs have been associated with stress response and metabolic perturbations. Some central questions that remain are how pUCPs and mUCPs compare in biochemical properties, molecular structure and cell biology under physiological and metabolically perturbed conditions. This review takes advantage of the large amount of data available for mUCPs to review the biochemical properties, 3D structure models and potential physiological roles of pUCPs during plant development and response to stress. The biochemical properties and structure of pUCPs are revisited in light of the recent findings that pUCPs catalyse the transport of metabolites across the mitochondrial inner membrane and the resolved mUCP2 protein structure. Additionally, transcriptional regulation and co-expression networks of UCP orthologues across species are analysed, taking advantage of publicly available curated experimental datasets. Taking these together, the biological roles of pUCPs are analysed in the context of their potential roles in thermogenesis, ROS production, cell signalling and the regulation of plant cellular bioenergetics. Finally, pUCPs biological function is discussed in the context of their potential role in protecting against environmental stresses.


Asunto(s)
Proteínas Desacopladoras Mitocondriales/química , Proteínas Desacopladoras Mitocondriales/metabolismo , Plantas/metabolismo , Metabolismo Energético , Regulación de la Expresión Génica de las Plantas , Modelos Moleculares , Desarrollo de la Planta , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Conformación Proteica , Estrés Fisiológico
4.
Arch Biochem Biophys ; 657: 41-55, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30217511

RESUMEN

The uncoupling protein (UCP1) is a proton (H+) transporter in the mitochondrial inner membrane. By dissipating the electrochemical H+ gradient, UCP1 uncouples respiration from ATP synthesis, which drives an increase in substrate oxidation via the TCA cycle flux that generates more heat. The mitochondrial uncoupling-mediated non-shivering thermogenesis in brown adipose tissue is vital primarily to mammals, such as rodents and new-born humans, but more recently additional functions in adult humans have been described. UCP1 is regulated by ß-adrenergic receptors through the sympathetic nervous system and at the molecular activity level by nucleotides and fatty acid to meet thermogenesis needs. The discovery of novel UCP homologs has greatly contributed to the understanding of human diseases, such as obesity and diabetes. In this article, we review the progress made towards the molecular mechanism and function of the UCPs, in particular focusing on the influential contributions from Martin Klingenberg's laboratory. Because all members of the UCP family are potentially promising drug targets, we also present and discuss possible approaches and methods for UCP-related drug discovery.


Asunto(s)
Proteínas Desacopladoras Mitocondriales/química , Proteínas Desacopladoras Mitocondriales/metabolismo , Adenosina Trifosfato/metabolismo , Tejido Adiposo Pardo/metabolismo , Animales , Sitios de Unión , Ácidos Grasos no Esterificados/metabolismo , Humanos , Unión Proteica , Termogénesis/fisiología
5.
J Am Chem Soc ; 138(50): 16508-16514, 2016 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-27998096

RESUMEN

Uncoupling proteins (UCPs) regulate energy expenditure in living cells by inducing proton leakage across the mitochondrial inner membrane, thereby uncoupling adenosine diphosphate phosphorylation from nutrient oxidation. The proton transport activity of UCP1 and UCP2 requires activation by fatty acids. We report here the first examples of synthetic neutral anion receptors performing this biologically important fatty acid-activated function in phospholipid bilayers. We have shown that a tripodal thiourea possesses poor H+/OH- transport activity without fatty acids, but in the presence of long-chain fatty acids is "switched on" as a proton transporter with an activity close to that of a commonly used protonophore. The fatty acid-enhanced proton transport was also observed for other hydrogen and halogen bond-based synthetic anion transporters. We propose that these compounds induce proton permeability by catalyzing transbilayer movement ("flip-flop") of anionic forms of fatty acids, so allowing the fatty acids to complete a proton transport cycle. Several lines of evidence have been provided to support such a fatty acid cycling mechanism. Our findings open up new applications of anion receptor chemistry and provide important clues for understanding biological activities of synthetic anion transporters and potentially the uncoupling mechanism of naturally occurring membrane proteins.


Asunto(s)
Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Ácidos Grasos/metabolismo , Proteínas Desacopladoras Mitocondriales/metabolismo , Protones , Sitios de Unión , Materiales Biomiméticos/síntesis química , Enlace de Hidrógeno , Transporte Iónico/efectos de los fármacos , Membrana Dobles de Lípidos/metabolismo , Proteínas Desacopladoras Mitocondriales/química , Modelos Moleculares , Permeabilidad/efectos de los fármacos , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...